Ulrich ideals in numerical semigroup rings

Naoki Endo

Meiji University
based on the recent works jointly with
S．Goto，S．－i．lai，and N．Matsuoka
第33回可換環論セミナー

June 16， 2022

1. Introduction

This talk is based on the recent researches below.

- N. Endo and S. Goto, Ulrich ideals in numerical semigroup rings of small multiplicity, arXiv:2111.00498
- N. Endo, S. Goto, S.-i. lai, and N. Matsuoka, Ulrich ideals in the ring $k\left[\left[t^{5}, t^{11}\right]\right]$, arXiv:2111.01085

Problem 1.1

Determine all the Ulrich ideals in a given CM local ring.

What is an Ulrich ideal?

- In 1971, J. Lipman investigated stable maximal ideal in a CM local ring.
- In 2014, S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, K.-i. Yoshida modified the notion of stable maximal ideal, which they call an Ulrich ideal.
- (A, \mathfrak{m}) be a CM local ring with $d=\operatorname{dim} A$.
- $\sqrt{I}=\mathfrak{m}, I$ contains a parameter ideal Q of A as a reduction (i.e. $I^{n+1}=Q I^{n}$ for some $n \geq 0$)

Definition 1.2 (Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014)

We say that I is an Ulrich ideal of A, if
(1) $I \supsetneq Q, I^{2}=Q I$, and
(2) I / I^{2} is A / I-free.

Note that

- $(1) \Longleftrightarrow \operatorname{gr}_{l}(A)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}$ is a CM ring with $\mathrm{a}\left(\mathrm{gr}_{l}(A)\right)=1-d$.
- If $I=\mathfrak{m}$, then $(1) \Longleftrightarrow A$ has minimal multiplicity $\mathrm{e}(A)>1$.
- (2) and $I \supsetneq Q \Longrightarrow \operatorname{pd}_{A} I=\infty$ (Ferrand, Vasconcelos, 1967)

Assume that $I^{2}=Q I$. Then the exact sequence

$$
0 \rightarrow Q / Q I \rightarrow I / I^{2} \rightarrow I / Q \rightarrow 0
$$

of A / I-modules shows

$$
I / I^{2} \text { is } A / I \text {-free } \Longleftrightarrow I / Q \text { is } A / I \text {-free. }
$$

Therefore, if I is an Ulrich ideal of A, then

- $I / Q \cong(A / I)^{\oplus\left(\mu_{A}(I)-d\right)}$,
- $Q:_{A} I=I$ (i.e., I is a good ideal of A),
- $\mathrm{r}_{A}(I / Q)=\left(\mu_{A}(I)-d\right) \cdot \mathrm{r}(A / I)=\mathrm{r}(A)$
so that

$$
d+1 \leq \mu_{A}(I) \leq d+r(A)
$$

Hence, when A is a Gorenstein ring, every Ulrich ideal I is generated by $d+1$ elements (if it exists).

For every Ulrich ideal I of A, we have
Theorem 1.3 (Goto-Takahashi-T, 2015)

$$
\operatorname{Ext}_{A}^{i}(A / I, A) \text { is } A / I \text {-free for } \forall i \in \mathbb{Z}
$$

Hence

$$
\mu_{A}(I)=d+1 \quad \Longleftrightarrow G-\operatorname{dim}_{A} A / I<\infty .
$$

This shows if A is G-regular, then $\mu_{A}(I) \geq d+2$.
Consequently, if I is an Ulrich ideal of A with $\mu_{A}(I)=d+1$, then

- A / I is Gorenstein $\Longleftrightarrow A$ is Gorenstein,
- I is a totally reflexive A-module,
- $\operatorname{pd}_{A} I=\infty$, and
the minimal free resolution of I has a very restricted form.

In what follows, assume $d=1$ and I is an Ulrich ideal of A with $\mu_{A}(I)=2$.
Write $I=(a, b)$, where $a, b \in A$ and $Q=(a)$ is a reduction of I.
By taking $c \in I$ with $b^{2}=a c$, the minimal free resolution of I has the form

$$
\cdots \longrightarrow A^{\oplus 2}\left(\begin{array}{cc}
-b & -c \\
a & b
\end{array}\right) A^{\oplus 2}\left(\begin{array}{cc}
-b & -c \\
a & b
\end{array}\right) A^{\oplus 2} \xrightarrow{a}\left(\begin{array}{ll}
\longrightarrow
\end{array}\right)
$$

We then have $I=J$, once

$$
\operatorname{Syz}_{A}^{i}(I) \cong \operatorname{Syz}_{A}^{i}(J) \text { for some } i \geq 0
$$

provided I, J are Ulrich ideals of A. (GOTWY, 2014)

Corollary 1.4 (GOTWY, 2014)

Suppose that A is a Gorenstein ring. If I, J are Ulrich ideals of A with $\mathfrak{m} J \subseteq I \subsetneq J$, then A is a hypersurface.

Let \mathcal{X}_{A} be the set of Ulrich ideals in A.
On the other hand

- If A has finite CM representation type, then \mathcal{X}_{A} is finite. (GOTWY, 2014)
- Suppose that \exists a fractional canonical ideal K. Set $\mathfrak{c}=A: A[K]$. If A is a non-Gorenstein almost Gorenstein ring, then

$$
\mathcal{X}_{A} \subseteq\{\mathfrak{m}\} \quad(\mathrm{GTT}, 2015)
$$

If A is a 2 -almost Gorenstein ring with minimal multiplicity, then

$$
\{\mathfrak{m}\} \subseteq \mathcal{X}_{A} \subseteq\{\mathfrak{m}, \mathfrak{c}\} \quad(\text { Goto-Isobe-T, } 2020)
$$

We expect that there is a strong connection between the behavior of Ulrich ideals and the structure of base rings.

Problem 1.1

Determine all the Ulrich ideals in a given CM local ring.

Question 1.5

How many two-generated Ulrich ideals are contained in a given numerical semigroup ring?

Let

- $0<a_{1}, a_{2}, \ldots, a_{\ell} \in \mathbb{Z}$ s.t. $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)=1$
- $H=\left\langle a_{1}, a_{2}, \ldots, a_{\ell}\right\rangle=\left\{\sum_{i=1}^{\ell} c_{i} a_{i} \mid 0 \leq c_{i} \in \mathbb{Z}\right.$ for all $\left.1 \leq i \leq \ell\right\}$
- $A=k[[H]]=k\left[\left[t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{\ell}}\right]\right] \subseteq V=k[[t]]=\bar{A}$, where k is a field
- $\mathrm{c}(H)=\min \{n \in \mathbb{Z} \mid m \in H$ for all $m \in \mathbb{Z}$ s.t. $m \geq n\}$

Note that $t^{\mathrm{c}(H)} V \subseteq A$.

2. Method of computation

Previous Method

Let

- (A, \mathfrak{m}) be a Gorenstein local ring with $\operatorname{dim} A=1$,
- \mathcal{X}_{A} be the set of Ulrich ideals in A,
- \mathcal{Y}_{A} be the set of birational module-finite extensions B of A (i.e., $A \subseteq B \subseteq Q(A)$ and B is a finitely generated A-module)
s.t. B is a Gorenstein ring and $\mu_{A}(B)=2$.

Then, there exist bijective correspondences

$$
\mathcal{X}_{A} \rightarrow \mathcal{Y}_{A}, I \mapsto A^{\prime} \quad \text { and } \quad \mathcal{Y}_{A} \rightarrow \mathcal{X}_{A}, B \mapsto A: B
$$

where

$$
A^{\prime}=\bigcup_{n \geq 0}\left[I^{n}: I^{n}\right]=I: I .
$$

Example 2.1

Let $A=k\left[\left[t^{2}, t^{2 \ell+1}\right]\right](\ell \geq 1)$. Then

$$
\mathcal{X}_{A}=\left\{\left(t^{2 q}, t^{2 \ell+1}\right) \mid 1 \leq q \leq \ell\right\} .
$$

(Proof) Note that $\mathcal{Y}_{A}=\left\{k\left[\left[t^{2}, t^{2(\ell-q)+1}\right]\right] \mid 1 \leq q \leq \ell\right\}$.
For $1 \leq \forall q \leq \ell$, we have

$$
\begin{aligned}
A: k\left[\left[t^{2}, t^{2(\ell-q)+1}\right]\right] & =A:\left(A+A t^{2(\ell-q)+1}\right) \\
& =A: A t^{2(\ell-q)+1} \\
& =\left(t^{2 q}, t^{2 \ell+1}\right)
\end{aligned}
$$

This shows $\mathcal{X}_{A}=\left\{\left(t^{2 q}, t^{2 \ell+1}\right) \mid 1 \leq q \leq \ell\right\}$.

Let

- $V=k[[t]]$ be the formal power series ring over a field k
- A be a k-subalgebra of V.

We say that

$$
A \text { is a core of } V \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad t^{c} V \subseteq A \text { for some } c \gg 0 \text {. }
$$

Example 2.2

- $k[[H]]$ is a core of V,
- $A=k\left[t^{2}+t^{3}\right]+t^{4} V$ is core, but $A \neq k[[H]]$ for any numerical semigroup H.

Let A be a core of V and suppose $t^{c} V \subseteq A$ with $c \gg 0$. Then

$$
k\left[\left[t^{c}, t^{c+1}, \ldots, t^{2 c-1}\right]\right] \subseteq A \subseteq V
$$

so that V is a birational module-finite extension of A.

Hence, for every core A of V,

- $V=\bar{A}$
- A is a CM complete local domain with $\operatorname{dim} A=1$
- $V / \mathfrak{n} \cong A / \mathfrak{m}$
where \mathfrak{m} (resp. $\mathfrak{n}=t V$) stands for the maximal ideal of A (resp. V).
Let $o(-)$ denote the \mathfrak{n}-adic valuation of V, and set

$$
H=v(A)=\{o(f) \mid 0 \neq f \in A\} .
$$

Note that

$$
H=v(A) \text { is symmetric } \Longleftrightarrow A \text { is Gorenstein (Kunz, 1970) }
$$

Let I be an Ulrich ideal of A with $\mu_{A}(I)=2$. Choose $f, g \in I$ s.t. $I=(f, g)$ and $I^{2}=f l$. Then

$$
A^{\prime}=I: I=\frac{I}{f}=A+A \cdot \frac{g}{f}
$$

is a core of V, and $v\left(A^{\prime}\right)$ is symmetric if A is Gorenstein.

Lemma 2.3 (Key Lemma)

Let I be an Ulrich ideal in A with $\mu_{A}(I)=2$. Then one can choose $f, g \in I$ satisfying the following conditions, where $a=o(f)$ and $b=o(g)$.
(1) $I=(f, g)$ and $I^{2}=f l$.
(2) $a, b \in H$ and $0<a<b<a+c(H)$.
(3) $b-a \notin H, 2 b-a \in H, a=2 \cdot \ell_{A}(A / I)$, and $I \supseteq A: V$.
(4) If $a \geq c(H)$, then $\mathrm{e}(A)=2$ and $I=A: V$.

- Method of computation

- Step $1 \cdots$ Let $I \in \mathcal{X}_{A}$ with $\mu_{A}(I)=2$. Choose $f, g \in I$ which satisfy the conditions in Lemma 2.3.
- Step $2 \cdots$ Consider $A^{\prime}=A+A \cdot \frac{g}{f}$ and determine $v\left(A^{\prime}\right)$.
- Step $3 \cdots$ Determine the possible pair $(o(f), o(g))$.
- Step $4 \ldots$ Determine the form of generators of I.
- Step $5 \ldots$ Conversely, the ideal of the form as in Step 4 is an Ulrich ideal,

3. Main theorem

Example 3.1

Let $A=k\left[\left[t^{3}, t^{7}\right]\right]$. Then

$$
\mathcal{X}_{A}=\left\{\left(t^{6}+\alpha t^{7}, t^{10}\right) \mid 0 \neq \alpha \in k\right\} .
$$

(Proof) Set $H=\langle 3,7\rangle$. Note that $c(H)=12$. As A is Gorenstein, every $I \in \mathcal{X}_{A}$ is generated by two elements. Choose $f, g \in I$ which satisfy the conditions in Lemma 2.3, i.e.,

- $I=(f, g)$ and $I^{2}=f I$
- $a, b \in H$ and $0<a<b<a+c(H)=a+12$
- $b-a \notin H, a=2 \cdot \ell_{A}(A / I)$, and $I \supseteq A: V=t^{12} V$
- $a<c(H)=12$
where $a=\mathrm{o}(f)$ and $b=\mathrm{o}(g)$.
Then $a=6,10$ and $b-a=1,2,4,5,8,11$.

Consider

$$
A^{\prime}=I: I=\frac{I}{f}=A+A \xi
$$

where $\xi=\frac{g}{f}$. Then $\mu_{A}\left(A^{\prime}\right)=2$ and $A^{\prime}=k\left[\left[t^{3}, t^{7}, \xi\right]\right]$ is Gorenstein. We have $\mathrm{o}(\xi)=b-a$, whence $b-a \in v\left(A^{\prime}\right) \backslash H$.

- If $1 \in v\left(A^{\prime}\right)$, then $A^{\prime}=V$. This is absurd, because $\mu_{A}(V)=3$.
- If $2 \in v\left(A^{\prime}\right)$, then $v\left(A^{\prime}\right)=\langle 2,3\rangle$, so that $A^{\prime}=k\left[\left[t^{2}, t^{3}\right]\right]$. As $t^{4} \notin \mathfrak{m} A^{\prime}$, $\mu_{A}\left(A^{\prime}\right)=\ell_{A}\left(A^{\prime} / \mathfrak{m} A^{\prime}\right)=\operatorname{dim}_{k}\left(k\left[\overline{t^{2}}\right]\right)>2$. This makes a contradiction. Hence, $\mathrm{e}\left(v\left(A^{\prime}\right)\right)=3$, so that $v\left(A^{\prime}\right)=\langle 3, \alpha\rangle$ for $\exists \alpha \not \equiv 0 \bmod 3$.

Then, one can show that $\alpha=b-a$ and $\alpha \equiv 1 \bmod 3$. Thus

$$
\alpha=4 \quad \text { and } \quad v\left(A^{\prime}\right)=\langle 3,4\rangle .
$$

Suppose $a=10$. Since $\ell_{A}(V / A)=6, \ell_{A}(A / I)=\frac{a}{2}=5, \ell_{A}(V / A: V)=12$ and

$$
I \supseteq(f)+A: V \supsetneq A: V=t^{12} V,
$$

we get, $I=(f)+A: V=\left(f, t^{12}, t^{13}, t^{14}\right)=\left(t^{10}, t^{12}, t^{14}\right)$. This is impossible.
Therefore, $a=6$ and $b=10$.

Hence

$$
I=\left(t^{6}+\alpha t^{7}+\beta t^{9}, t^{10}\right)+t^{12} V=\left(t^{6}+\alpha t^{7}+\beta t^{9}, t^{10}, t^{12}, t^{13}, t^{14}\right)
$$

where $\alpha, \beta \in k$.
Since $t^{9}=t^{3}\left(t^{6}+\alpha t^{7}+\beta t^{9}\right)-\alpha t^{10}-\beta t^{12}$ and $t^{9}=t^{3}\left(t^{6}+\alpha t^{7}\right)-\alpha t^{10}$, we get

$$
\begin{aligned}
I & =\left(t^{6}+\alpha t^{7}+\beta t^{9}, t^{10}, t^{12}, t^{13}, t^{14}\right) \\
& =\left(t^{6}+\alpha t^{7}+\beta t^{9}, t^{10}, t^{12}, t^{14}\right) \\
& =\left(t^{6}+\alpha t^{7}+\beta t^{9}, t^{9}, t^{10}, t^{12}, t^{14}\right) \\
& =\left(t^{6}+\alpha t^{7}, t^{9}, t^{10}, t^{12}, t^{14}\right) \\
& =\left(t^{6}+\alpha t^{7}, t^{9}, t^{10}, t^{14}\right) \\
& =\left(t^{6}+\alpha t^{7}, t^{10}, t^{14}\right)
\end{aligned}
$$

If $\alpha=0$, then $I=\left(t^{6}, t^{10}, t^{14}\right)$, which is a contradiction. Thus $\alpha \neq 0$. Since

$$
t^{14}=\frac{1}{\alpha} t^{7}\left(t^{6}+\alpha t^{7}\right)-\frac{1}{\alpha} t^{3} \cdot t^{10}
$$

we finally get $I=\left(t^{6}+\alpha t^{7}, t^{10}\right)$.

Theorem 3.2 (Main theorem)

Let $\ell \geq 7$ be an integer such that $\operatorname{gcd}(3, \ell)=1$ and set $A=k\left[\left[t^{3}, t^{\ell}\right]\right]$.
(1) Suppose that $\ell=3 n+1$ where $n \geq 3$ is odd. Let $q=\frac{n-1}{2}$. Then

$$
\begin{aligned}
\mathcal{X}_{A} & =\left\{\left(t^{\ell}+\sum_{j=1}^{q} \alpha_{j} t^{\ell+3 j-1}, t^{\ell+3 q+2}\right) \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} \in k\right\} \\
& \bigcup\left\{\left(t^{6 i}+\sum_{s=0}^{i-1} \alpha_{s} t^{\ell+3 s}, t^{\ell+3 i}\right) \mid 1 \leq i \leq q, \alpha_{0}, \ldots, \alpha_{i-1} \in k, \alpha_{0} \neq 0\right\} .
\end{aligned}
$$

(2) Suppose that $\ell=3 n+1$ where $n \geq 2$ is even. Let $q=\frac{n}{2}$. Then

$$
\mathcal{X}_{A}=\left\{\left(t^{6 i}+\sum_{s=0}^{i-1} \alpha_{s} t^{\ell+3 s}, t^{\ell+3 i}\right) \mid 1 \leq i \leq q, \alpha_{0}, \ldots, \alpha_{i-1} \in k, \alpha_{0} \neq 0\right\} .
$$

Theorem 3.1 (continued)

(3) Suppose that $\ell=3 n+2$ where $n \geq 1$ is odd. Let $q=\frac{n-1}{2}$. Then

$$
\mathcal{X}_{A}=\left\{\left(t^{6 i}+\sum_{s=0}^{i-1} \alpha_{s} t^{\ell+3 s}, t^{\ell+3 i}\right) \mid 1 \leq i \leq q, \alpha_{0}, \ldots, \alpha_{i-1} \in k, \alpha_{0} \neq 0\right\} .
$$

(4) Suppose that $\ell=3 n+2$ where $n \geq 2$ is even. Let $q=\frac{n}{2}$. Then

$$
\begin{aligned}
\mathcal{X}_{A} & =\left\{\left(t^{\ell}+\sum_{j=1}^{q} \alpha_{j} t^{\ell+3 j-2}, t^{\ell+3 q+1}\right) \mid \alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} \in k\right\} \\
& \bigcup\left\{\left(t^{6 i}+\sum_{s=0}^{i-1} \alpha_{s} t^{\ell+3 s}, t^{\ell+3 i}\right) \mid 1 \leq i \leq q, \alpha_{0}, \ldots, \alpha_{i-1} \in k, \alpha_{0} \neq 0\right\} .
\end{aligned}
$$

Moreover, the coefficients α_{i} 's in the system of generators of $I \in \mathcal{X}_{A}$ are uniquely determined for I.

We denote by \mathcal{X}_{A}^{g} the set of Ulrich ideals in A generated by monomials in t. Then \mathcal{X}_{A}^{g} is a finite set (GOTWY, 2014).

Corollary 3.3

Let $\ell \geq 7$ be an integer s.t. $\operatorname{gcd}(3, \ell)=1$ and set $A=k\left[\left[t^{3}, t^{\ell}\right]\right]$. Then
(1) $\mathcal{X}_{A} \neq \emptyset$.
(2) \mathcal{X}_{A} is finite $\Longleftrightarrow k$ is a finite field.
(3) $\mathcal{X}_{A}^{g}=\emptyset \quad \Longleftrightarrow \quad \ell=3 n+1$ or $\ell=3 n+2$ for some even integer $n \geq 2$

Example 3.4

Let $A=k\left[\left[t^{3}, t^{7}\right]\right]$. Then $\mathcal{X}_{A}=\left\{\left(t^{6}+\alpha t^{7}, t^{10}\right) \mid 0 \neq \alpha \in k\right\}$.
Hence, ${ }^{\#} \mathcal{X}_{A}={ }^{\#} k-1$ and A does not contain monomial Ulrich ideals.

4. More examples

Example 4.1

We have

$$
\begin{aligned}
& \mathcal{X}_{k\left[\left[t^{4}, t^{13}\right]\right]}=\left\{\left(t^{12}+2 \beta t^{17}+\alpha t^{26}, t^{21}+\beta t^{26}\right) \mid \alpha, \beta \in k, \beta \neq 0\right\} \\
& \bigcup\left\{\left(t^{16}+2 \beta t^{17}+\alpha_{2} t^{21}+\alpha_{3} t^{26}, t^{25}+\beta t^{26}\right) \mid \alpha_{2}, \alpha_{3}, \beta \in k, \beta \neq 0\right\} \\
& \bigcup\left\{\left(t^{4}+\alpha t^{13}, t^{26}\right) \mid \alpha \in k\right\} \\
& \bigcup\left\{\left(t^{8}+\alpha_{1} t^{13}+\alpha_{2} t^{17}, t^{26}\right) \mid \alpha_{1}, \alpha_{2} \in k\right\} \\
& \bigcup\left\{\left(t^{12}+\alpha_{1} t^{13}+\alpha_{2} t^{17}+\alpha_{3} t^{21}, t^{26}\right) \mid \alpha_{1}, \alpha_{2}, \alpha_{3} \in k\right\} \\
& \bigcup\left\{\left(t^{16}+\alpha_{1} t^{17}+\alpha_{2} t^{21}+\alpha_{3} t^{25}, t^{26}\right) \mid \alpha_{1}, \alpha_{2}, \alpha_{3} \in k\right\} \\
& \bigcup\left\{\left(t^{20}+\alpha_{1} t^{21}+\alpha_{2} t^{25}+\alpha_{3} t^{29}, t^{26}+\beta t^{29}\right) \mid \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta \in k, \alpha_{1}^{3}=2 \beta\right\} \\
& \bigcup\left\{\left(t^{24}+\alpha_{1} t^{25}+\alpha_{2} t^{29}+\alpha_{3} t^{33}, t^{26}+\beta_{1} t^{29}+\beta_{2} t^{33}\right) \mid \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2} \in k,\right. \\
&\left.\alpha_{1}=0 \text { if ch } k=2 ; \alpha_{1}=\alpha_{2}=\beta_{1}=\beta_{2}=0 \text { if ch } k \neq 2\right\} .
\end{aligned}
$$

 uniquely determined by I.

5. three-generated numerical semigroup rings

- $0<a, b, c \in \mathbb{Z}$ s.t. $\operatorname{gcd}(a, b, c)=1$ and set $H=\langle a, b, c\rangle$
- $A=k[[H]]=k\left[\left[t^{a}, t^{b}, t^{c}\right]\right] \subseteq V=k[[t]]$
- $\mathfrak{m}=\left(t^{a}, t^{b}, t^{c}\right)$

For a finitely generated A-module M, let

$$
P_{M}^{A}(t)=\sum_{n=0}^{\infty} \beta_{n}^{A}(M) t^{n} \in \mathbb{Z}[[t]]
$$

where $\beta_{n}^{A}(M)$ denotes the n-th Betti number of M.
Theorem 5.1
Suppose that $A=k[[H]]$ is not a Gorenstein ring. Then

$$
\beta_{n}^{A}(A / \mathfrak{m})=\left\{\begin{array}{ll}
1 & (n=0) \\
3 \cdot 2^{n-1} & (n>0)
\end{array} \quad \text { and } \quad P_{A / \mathfrak{m}}^{A}(t)=\frac{1+t}{1-2 t}\right.
$$

(Proof) As A is not Gorenstein, we have

$$
A \cong k[[X, Y, Z]] / I_{2}\left(\begin{array}{ccc}
x^{\alpha} & Y^{\beta} & Z^{\gamma} \\
Y^{\beta^{\prime}} & z^{\gamma^{\prime}} & x^{\alpha^{\prime}}
\end{array}\right)
$$

for $\exists \alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}>0$. Hence

$$
A /\left(t^{a}\right) \cong k[Y, Z] / I_{2}\left(\begin{array}{cc}
0 & Y^{\beta} \\
Y^{\beta^{\prime}} & Z^{\gamma} \\
Z^{\gamma} & 0
\end{array}\right)=k[Y, Z] /\left(Y^{\beta+\beta^{\prime}}, Y^{\beta^{\prime}} Z^{\gamma}, Z^{\gamma+\gamma^{\prime}}\right) .
$$

Let

$$
B=k[Y, Z] /\left(Y^{\beta+\beta^{\prime}}, Y^{\beta^{\prime}} Z^{\gamma}, Z^{\gamma+\gamma^{\prime}}\right)
$$

and let y, z denote the images of Y, Z in B, respectively. Then, because

$$
P_{B /(y, z)}^{B}(t)=\frac{P_{A / \mathfrak{m}}^{A}(t)}{1+t}
$$

we get $P_{A / \mathfrak{m}}^{A}(t)=\frac{1+t}{1-2 t}$, once we have

$$
P_{B /(y, z)}^{B}(t)=\frac{1}{1-2 t}=1+2 t+4 t^{2}+\cdots+2^{n} t^{n}+\cdots .
$$

To see this, we consider the minimal B-free resolution of $B /(y, z)$.

One can show that

$$
B^{\oplus 16} \xrightarrow{\mathbb{M}_{3}} B^{\oplus 8} \xrightarrow{\mathbb{M}_{2}} B^{\oplus 4} \xrightarrow{\mathbb{M}_{1}} B^{\oplus 2} \xrightarrow{\mathbb{M}_{0}} B \xrightarrow{\varepsilon} B /(y, z) \longrightarrow 0
$$

forms a part of the minimal B-free resolution of $B /(y, z)$, where ε is the canonical epimorphism,

$$
\begin{aligned}
& \mathbb{M}_{0}=\left(\begin{array}{ll}
y & z
\end{array}\right), \quad \mathbb{M}_{1}=\left(\begin{array}{cccc}
y^{\beta+\beta^{\prime}-1} & y^{\beta^{\prime}-1} z^{\gamma} & 0 & z \\
0 & 0 & z^{\gamma+\gamma^{\prime}-1} & -y
\end{array}\right), \\
& \mathbb{M}_{2}=\left(\begin{array}{cccccccc}
y & z & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & y & z & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & y & z & 0 & 0 \\
0 & -y^{\beta+\beta^{\prime}-1} & 0 & -y^{\beta^{\prime}-1} z^{\gamma} z^{\gamma+\gamma^{\prime}-1} & 0 y^{\beta+\beta^{\prime}-1} z^{\gamma-1} & y^{\beta^{\prime}-1} z^{\gamma+\gamma^{\prime}-1}
\end{array}\right) \text {, and } \\
& \mathbb{M}_{3}=\left(\begin{array}{llllll}
\mathbb{M}_{1} & & & & \\
& \mathbb{M}_{1} & & & \\
& & \mathbb{M}_{1} & & \\
& & & \mathbb{M}_{0} & \\
& & & \mathbb{M}_{0}
\end{array}\right) .
\end{aligned}
$$

Since \mathbb{M}_{3} consists of \mathbb{M}_{0} and \mathbb{M}_{1}, the Poincaré series of $B /(y, z)$ has the form

$$
P_{B /(y, z)}^{B}(t)=1+2 t+4 t^{2}+\cdots+2^{n} t^{n}+\cdots
$$

as claimed.

Corollary 5.2 (cf. Gasharov-Peeva-Welker, 2000)

Every three-generated non-Gorenstein numerical semigroup ring is Golod.
(Proof) Let $S=k[[X, Y, Z]]$. The S-module A has a minimal free resolution

$$
0 \rightarrow S^{2} \xrightarrow{\left(\begin{array}{ll}
x^{\alpha} & Y^{\beta^{\prime}} \\
\gamma^{\beta} & z^{\gamma^{\prime}} \\
z^{\gamma} & \chi^{\alpha^{\prime}}
\end{array}\right)} S^{3} \rightarrow S \rightarrow A \rightarrow 0
$$

whence Theorem 5.1 tells us

$$
P_{A / \mathfrak{m}}^{A}(t)=\frac{1+t}{1-2 t}=\frac{(1+t)^{3}}{1-3 t^{2}-2 t^{3}}=\frac{P_{S / \mathfrak{n}}^{S}(t)}{1-t \cdot\left(P_{A}^{S}(t)-1\right)},
$$

where $\mathfrak{n}=(X, Y, Z)$. Therefore, the natural surjection $S \rightarrow A$ is a Golod homomorphism, so that A is a Golod ring.

Note that

- every Golod local ring which is not a hypersurface must be G-regular. (Avramov-Martsinkovsky, 2002)

Corollary 5.3

Every three-generated non-Gorenstein numerical semigroup ring contains no Ulrich ideals generated by two elements.

Since $H=\langle a, b, c\rangle$, we have
H is symmetric $\Longleftrightarrow k[[H]]$ is a complete intersection (Herzog, 1970).
If H is symmetric, it is obtained by a gluing of a two-generated numerical semigroup H^{\prime} and \mathbb{N} (Herzog, 1970, Watanabe, 1973).

Let

- $0<\alpha, \beta \in \mathbb{Z}$ s.t. $\operatorname{gcd}(\alpha, \beta)=1$.
- $H^{\prime}=\langle\alpha, \beta\rangle$

Choose $a \in H^{\prime}$ and $b \in \mathbb{N}$ which satisfy

$$
a>0, b>1, a \notin\{\alpha, \beta\}, \text { and } \operatorname{gcd}(a, b)=1 .
$$

Hence, $\operatorname{gcd}(b \alpha, b \beta, a)=1$. Consider

$$
H=\langle b \alpha, b \beta, a\rangle
$$

and call it the gluing of H^{\prime} and \mathbb{N} with respect to $a \in H^{\prime}$ and $b \in \mathbb{N}$.

Assume that $H=\langle b \alpha, b \beta, a\rangle$.

Proposition 5.4

Suppose that one of the following conditions is satisfied.
(1) b is even and $\ell \geq 2$.
(2) b is even and $m \geq 2$.
(3) either α or β is even.

Then $A=k[[H]]$ admits at least one Ulrich ideal of A.

Thank you for your attention.

